15 research outputs found

    Considerations for the bioprocessing, manufacture and translation of extracellular vesicles for therapeutic and diagnostic applications

    Get PDF
    There is growing interest in the potential and use of extracellular vesicles (EVs) for a range of diagnostic and therapeutic applications. EVs have been shown, in some instances, to mediate the regenerative effects elicited by stem cell therapies. As such, they are being studied to identify the extent to which these extracellular bodies can be employed as a therapeutic entity, and significant R&D activity is underway to further understand their clinical and commercial potential. However, successful translation will first require further characterization and standardization of EV production, as well as addressing some of the major challenges associated with their reproducible manufacture. This includes the capacity to produce EVs at a scale that is both clinically and commercially effective. This article will highlight some of the bioprocessing and manufacturing considerations and challenges associated with the standardized production of EVs

    Automating decentralized manufacturing of cell and gene therapy products.

    Get PDF
    Decentralized, or redistributed manufacture, is likely to be the manufacturing approach of choice for some cell- and gene-based therapies, in particular, personalized therapies. Such an approach will ultimately depend on the business model and will take into account the regulatory and supply chain factors. Advances in technology and integration of automated production platforms have demonstrated the potential for decentralized manufacturing, however there is a need to extend the scope of automation across the entire process including the cell isolation, distribution, tracking, administration, quality management systems and development of automated analytical techniques to facilitate real-time release. For decentralized manufacture to be successfully integrated for cell and gene therapy production, lessons from other accepted healthcare-associated models of manufacture can provide useful insights and perspectives to make informed decisions. Such models share similar characteristics to decentralized manufacture in that they are patient-specific and have a limited time-frame for administration. These existing approaches, which have successfully incorporated aspects of automation, can provide a blueprint for success and may expedite the decentralization of patient-specific cell and gene therapy manufacture

    A scaled-down model for the translation of bacteriophage culture to manufacturing scale

    Get PDF
    Therapeutic bacteriophages are emerging as a potential alternative to antibiotics and synergistic treatment of antimicrobial-resistant infections. This is reflected by their use in an increasing number of recent clinical trials. Many more therapeutic bacteriophage is being investigated in preclinical research and due to the bespoke nature of these products with respect to their limited infection spectrum, translation to the clinic requires combined understanding of the biology underpinning the bioprocess and how this can be optimized and streamlined for efficient methods of scalable manufacture. Bacteriophage research is currently limited to laboratory scale studies ranging from 1-20 ml, emerging therapies include bacteriophage cocktails to increase the spectrum of infectivity and require multiple large-scale bioreactors (up to 50 L) containing different bacteriophage-bacterial host reactions. Scaling bioprocesses from the milliliter scale to multi-liter large-scale bioreactors is challenging in itself, but performing this for individual phage-host bioprocesses to facilitate reliable and robust manufacture of phage cocktails increases the complexity. This study used a full factorial design of experiments approach to explore key process input variables (temperature, time of infection, multiplicity of infection, agitation) for their influence on key process outputs (bacteriophage yield, infection kinetics) for two bacteriophage-bacterial host bioprocesses (T4 - Escherichia coli; Phage K - Staphylococcus aureus). The research aimed to determine common input variables that positively influence output yield and found that the temperature at the point of infection had the greatest influence on bacteriophage yield for both bioprocesses. The study also aimed to develop a scaled down shake-flask model to enable rapid optimization of bacteriophage batch bioprocessing and translate the bioprocess into a scale-up model with a 3 L working volume in stirred tank bioreactors. The optimization performed in the shake flask model achieved a 550-fold increase in bacteriophage yield and these improvements successfully translated to the large-scale cultures

    Antimicrobial resistance mechanisms and potential synthetic treatments

    Get PDF
    In 1928, penicillin was discovered, changing the field of modern medicine as it provided an opportunity to treat microbial infections. Since then, microorganisms such as bacteria have evolved and now have the ability to resist a wide variety of agents that might otherwise prevent their growth. By 2050, it is estimated that around 10 million lives each year will be lost due to these bacteria. This article provides an insight into how bacteria resist antibiotics and potential new methods of treating these organisms

    Centralised versus decentralised manufacturing and the delivery of healthcare products: A United Kingdom exemplar

    Get PDF
    Background. The cell and gene therapy (CGT) field is at a critical juncture. Clinical successes have underpinned the requirement for developing manufacturing capacity suited to patient-specific therapies that can satisfy the eventual demand post-launch. Decentralised or ‘redistributed’ manufacturing divides manufacturing capacity across geographic regions, promising local, responsive manufacturing, customised to the end user, and is an attractive solution to overcome challenges facing the CGT manufacturing chain. Methods. A study was undertaken building on previous, so far unpublished, semistructured interviews with key opinion leaders in advanced therapy research, manufacturing and clinical practice.The qualitative findings were applied to construct a cost of goods model that permitted the cost impact of regional siting to be combined with variable and fixed costs of manufacture of a mesenchymal stromal cell product. Results. Using the United Kingdom as an exemplar, cost disparities between regions were examined. Per patient dose costs of ~£1,800 per 75,000,000 cells were observed. Financial savings from situating the facility outside of London allow 25–41 additional staff or 24–35 extra manufacturing vessels to be employed. Decentralised quality control to mitigate site-to-site variation was examined. Partial decentralisation of quality control was observed to be financially possible and an attractive option for facilitating release ‘at risk’. Discussion. There are important challenges that obstruct the easy adoption of decentralised manufacturing that have the potential to undermine the market success of otherwise promising products. By using the United Kingdom as an exemplar, the modelled data provide a framework to inform similar regional policy considerations across other global territories

    Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities

    Get PDF
    Decentralized or “redistributed” manufacturing has the potential to revolutionize the manufacturing approach for cell and gene therapies (CGTs), moving away from the “Fordist” paradigm, delivering health care locally, customized to the end user and, by its very nature, overcoming many of the challenges associated with manufacturing and distribution of high volume goods. In departing from the traditional centralized model of manufacturing, decentralized manufacturing divides production across sites or geographic regions. This paradigm shift imposes significant structural and organisational changes on a business presenting both hidden challenges that must be addressed and opportunities to be embraced. By profoundly adapting business practices, significant advantages can be realized through a democratized value chain, creation of professional-level jobs without geographic restriction to the central hub and a flexibility in response to external pressures and demands. To realize these potential opportunities, however, advances in manufacturing technology and support systems are required, as well as significant changes in the way CGTs are regulated to facilitate multi-site manufacturing. Decentralized manufacturing is likely to be the manufacturing platform of choice for advanced health care therapies—in particular, those with a high degree of personalization. The future success of these promising products will be enhanced by adopting sound business strategies early in development. To realize the benefits that decentralized manufacturing of CGTs has to offer, it is important to examine both the risks and the substantial opportunities present. In this research, we examine both the challenges and the opportunities this shift in business strategy represents in an effort to maximize the success of adoption

    Decentralised manufacturing of cell and gene therapy products: learning from other healthcare sectors

    Get PDF
    Decentralised or 'redistributed' manufacturing represents an attractive choice for production of some cell and gene therapies (CGTs), in particular personalised therapies. Decentralised manufacturing splits production into various locations or regions and in doing so, imposes organisational changes on the structure of a company. This confers a significant advantage by democratising supply, creating jobs without geographical restriction to the central hub and allowing a more flexible response to external pressures and demands. This comes with challenges that need to be addressed including, a reduction in oversight, decision making and control by central management which can be critical in maintaining quality in healthcare product manufacturing. The unwitting adoption of poor business strategies at an early stage in development has the potential to undermine the market success of otherwise promising products. To maximise the probability of realising the benefits that decentralised manufacturing of CGTs has to offer, it is important to examine alternative operational paradigms to learn from their successes and to avoid their failures. Whilst no other situation is quite the same as CGTs, some illustrative examples of established manufacturing paradigms are described. Each of these shares a unique attribute with CGTs which aids understanding of how decentralised manufacturing might be implemented for CGTs in a similar manner. In this paper we present a collection of paradigms that can be drawn on in formulating a roadmap to success for decentralised production of CGTs

    Mixing theory for culture and harvest in bioreactors of human mesenchymal stem cells on microcarriers

    Get PDF
    The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 Όm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, ΔT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high ΔT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L

    Serum-free process development: improving the yield and consistency of human mesenchymal stem cell production

    Get PDF
    Background: The cost effective production of hMSCs for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone-marrow derived hMSCs from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XVÂź Serum-free Medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XVÂź SFM resulted in a significantly higher growth rate (p < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XVÂź SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence via a correlation (R2 = 0.8705) across all conditions. PRIME-XVÂź SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilisation, in vitro colony forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost effectiveness and reduce the risk in these manufacturing processes
    corecore